Apitherapy | Bee Therapy | Biodecoding | Descodificacion Biologica | Chi Kung | Shen Kung | Kundalini Syndrome |Kundalini Yoga | Meditation | Nutrition  | Urinotherapy
Institute of Integrative Chi Kung for Beauty and Health  | Shank PrakShalana | Young Living Essential Oils

Bookmark and Share  

 

Your Amazon Purchases
Support the Institute by making purchases at Amazon from this site

 

 

All donations are used to further educate the community on Integrative Health Care alternatives

 

 Temperature Converter
  Centrigrade  : Fahrenheit   

 

 

 

 

Active Search Results 

INSTITUTE OF INTEGRATIVE CHI KUNG

CONSCIOUS INTEGRATIVE NUTRITION

[ Español ]  [ Go Back One Page ]

 

CONTENT

Theory & Guidelines

Mitochondrial Function Determines Cancer Growth and Repression

Enzyme Basics

Anti-inflammatory effects of a ketogenic diet

Obesity will soon overtake Smoking as lead cause of Cancer

Fight Cancer with a Ketogenic Diet: The Complete Picture

Obesity: Weight Modulation

Brain-gut-microbiota axis in Parkinson's disease

Carbohydrate "glucose" metabolism

Half of All Children Will Be Autistic by 2025

Metabolic Syndrome

Why is it necessary to know the science?

Wheat in Human Health (Gluten)

Traditional Vegetarian diets

How Gluten Destroys Thyroid Health

Why "diets" fail?

Alternative to Glucose Metabolism

How do i get well and retain my health?

Recommended Books

Keto-adaptation

ARTICLES

The Program

Treating Type-2 Diabetes as Carbohydrate Intolerance

If you've decided to take control of your health!

Connection between mitochondria and diet

General Eating Options Recommendations

WARNING:

Share This Page 

Bookmark and Share  

Side effects may include lower levels of stress and anxiety, increased productivity, higher sex-drive, drastic increase in functional lifespan, better memory, and a more pleasant personality.

Conscious Integrative Nutrition offers solutions providing coherent information with nutritional knowledge for the task of regaining and maintaining health, beauty and happiness.

If you present any of these symptoms:

In the Vitruvian Man, Leonardo da Vinci integrates
mathematics, religion, philosophy, architecture and artistic
skill of his age. Form, function and beautyClick to see video

  1. Acanthosis Nigricans
  2. Achy Joints
  3. ADHD (Attention Deficit
    Hhyperactivity disorder
    )
  4. Alopecia Areata (hair loss)
  5. ALS (Amyotrophic Lateral Sclerosis) or
    Lou Gehrig's disease
  6. Alzheimer's
  7. Anxiety
  8. Asthma
  9. Ataxia
  10. Autism
  11. Autoimmune disorder
  12. Behcet's Disease
  13. Bipolar disease
  14. Baldness
  15. Brain Tumors
  16. Carbohydrate Intolerance
  17. Cancer
  18. Cancer of the Mouth, Throat or Esophagus
  19. Cancer of the Large Intestine, Hepatobiliary system (liver and bile ducts) and Pancreas
  20. Cardiovascular disease
  21. Celiac disease
  22. Constipation (< 1 per day)
  23. Cutaneous Vasculitis
  24. Chronic Fatigue
  25. Chronic Hepatitis, primary Biliary Cirrhosis or Bladder Cancer
  26. Dementia
  27. Depression
  28. Dermatitis Herpetiformis
  29. Dermatomyositis
  30. Dyslipidemia
  31. Pre-Diabetes
  32. Diabetes: Type-1 or Type-2
  33. Erythema Nodosum
  34. Epilepsy
  35. Food Allergies and Intolerances
  36. Food Cravings
  37. Gastroesophageal Reflux
  38. Gastrointestinal Malignant Tumor
  39. Gluten Encephalopathy
  40. Gluten Intolerance
  41. Hashimoto's Thyroiditis
  42. Head Trauma
  43. Headaches
  44. Heartburn
  45. Huntington's disease or degeneration of nerve cells
  46. Ichthyosiform Dermatoses
  47. Iron deficiency
  48. Irritability
  49. Infantile Spasms
  50. Irregular Insulin or Insulin Resistance
  51. Irritable Bowel Syndrome
  52. Lupus
  53. Metabolic Syndrome (≈64 million or 34% of adults in the US)
    1. Excess Fat around the waist (Men 100cm-40"; women 90cm-35")
    2. High Triglycerides ( 150 mg/dL)
    3. Low HDL-C Cholesterol (Men < 40 mg/dL; women < 50 mg/dL)
    4. Predominance of small and dense LDL-C Cholesterol particles
    5. Hypertension ( 130/85 mmHg)
    6. High Fasting Glucose ( 100 mg/dL) or Impaired Glucose Tolerance
  54. Migraines
  55. Mitochondrial dysfunction
  56. Narcolepsy or Sleep disorder
  57. Nutritional deficiencie: protein, fatty acids and vitamins B12, D, E, K, folate, iron and zinc
  58. Overweight
  59. Obesity
  60. Oral Ulcers
  61. Parkinson's disease
  62. Premature Aging
  63. Polycystic Ovarian disease
  64. Premature Aging or Progeroid syndrome
  65. Psoriasis
  66. Pyoderma Gangrenosum
  67. Rheumatoid Arthritis
  68. Schizophrenia
  69. Small Intestinal Lymphoma
  70. State Pro-Inflammatory or Pro-Coagulant
  71. Stroke
  72. Tourette Syndrome
  73. Ulcerative Colitis
  74. Vitiligo

* Cancer = "Immune System Overload"

We accept that in the last 45 years we have been bombarded by wrong science on nutrition, full of political and economic interests. It is easy to test this hypothesis in a simple way. Looking at the population of developed countries we find that degenerative diseases are in a drastic growth. In the US, the overweight population is 69.0%, obesity is 35.1% , and the "Pharmaceutical and Health" industry is one of the largest and most powerful in the world—the 10 largest pharmaceutical companies showed an income of $429.4 billion with earnings of $89.8 billion dollars in 2014 . It is clear that people have a health problem!

Currently the population is in a state of "intellectual pollution", full of false data presented in wonderfully beautiful words without any concrete content. By accepting the need to "empty the glass" the first step materializes, which leads to the encounter of the solution. That is, to realize that, "the knowledge that took us to the problem, will not provide the solution." This paradigm allows the flexibility for new hypotheses and to test their results.

This requires understanding that man is composed of four (4) bodies that make up its Being, and they are an integral part of the solution:

  1. The Physical body with all biological structures.
  2. The Emotional body with cumulative unresolved
    resentments hidden in the unconscious.
  3. The Mental body containing our beliefs.
  4. The Spiritual body formed by internal and
    external energy relationships.

This segment of Nutrition focuses on providing resources and tools directed to the first three bodies through Conscious Integrative Nutrition.

Chi Kung focuses on breath and kinesiology alignment, Kundalini Yoga on body energy management, Meditation on energetic communication (interior/exterior), and Shen Kung over long distance energy management.

Please click on the film icon() to see video

Fed Up!  (Documentary Spanish subt)
This is the movie the food industry doesn't want you to see. FED UP blows the lid off everything we thought we knew about food and weight loss, revealing a 30-year campaign by the food industry, aided by the U.S. government, to mislead and confuse the American public, resulting in one of the largest health epidemics in history. From Katie Couric, Laurie David (Oscar winning producer of AN INCONVENIENT TRUTH) and director Stephanie Soechtig, FED UP will change the way you eat forever.

Why Conventional Recommendations for Those at High Risk for Heart Disease Usually Makes Matters Worse
by Mercola.com

 

 

ENZYME BASICS

There are three basic categories of enzymes:

  1. Digestive
  2. Metabolic
  3. Food based

Digestive enzymes, as their name implies, help you break down food into smaller parts that can be absorbed, transported and utilized by every cell in your body. Digestive enzymes are extra-cellular—meaning, they are found outside your cells.

Metabolic enzymes are intra-cellular—meaning, inside your cells, where they help the cell carry out a variety of functions related to its reproduction and replenishment.

Your pancreas produces most of these digestive and metabolic enzymes.

Fortunately, you get (or should be getting) many enzymes from the foods you consume—particularly, raw foods. These directly help with your digestive process.

The more raw foods you eat, the lower the burden on your body to produce the enzymes it needs, not only for digestion, but for practically everything. Whatever enzymes are not used up in digestion are then available to help with other important physiological processes.

[ read the comple article... ]

Please click on the film icon() to see video

Enzyme Basiscs
Enzymes are composed of amino acids and are secreted by your body to help
catalyze functions that would normally not occur at physiological temperatures.
They literally make magic happen and are absolutely vital to your life.

 

Obesity Will Soon Overtake Smoking as Lead Cause of Cancer
   By Dr. Mercola July 27, 2015

For decades, smoking was one of the leading causes of cancer, but that's about to change.

Obesity will likely claim the lead spot as the principal cause of 10 different types of cancer within the next decade, according to cancer specialists who discussed the trend at this year's American Society of Clinical Oncology (ASCO) conference in Chicago.

    "They said spiraling rates of obesity meant that cancer—once seen as a disease of old age—was now increasingly being diagnosed up to two decades earlier than in the past. Their figures suggest one in five cancer deaths in Britain is caused by excess weight," The Telegraph reports.

The links between obesity and cancer are quite clear, and excess weight can increase your risk of cancer rather significantly. For example, obese women increase their risk of womb cancer by 600 percent.

Your risk for breast, prostate, colon, and all the other gynecological cancers is also elevated, primarily due to the hormone imbalances associated with obesity, which tend to fuel tumor growth.

Please click on the film icon() to see video

Low-Fat Foods Are Making You Fatter
Adam busts some dietary myths wide open. Turns out fat isn't the
only thing that makes you, well, fat.

Researchers have also found a correlation between obesity and increased risk for cancer relapse. Overweight survivors of prostate cancer treatment were found to have a three percent higher rate of relapse compared to their slimmer counterparts. They also had seven percent higher odds of the cancer spreading.

Obesity: Weight Modulation

The question is, How many excess pounds do we have?

Research has unequivocally established that the relevant energy balance isn't between the calories we consume and the calories we expend (law of thermodynamics), but between the calories—in the form of free fatty acids, glucose, and glycerol—passing in and out of the fat cells. If more and more fatty acids are fixed in the fat tissue than are released from it, obesity will result. And while this is happening, the energy available to the cells is reduced by the "relative unavailability of fatty acids for fuel." The consequence will be what Edwin Astwood called "internal starvation." And as this research had now made clear, the critical molecules determining the balance of storage and mobilization of fatty acids, of lipogenesis and lipolysis, are glucose and insulin—i.e., carbohydrates and the insulin response to those carbohydrates.

The amount of glycerol phosphate available to the fat cells to accumulate fat—to bind the fatty acids together into triglycerides and lock them into the adipose tissue—also depends directly on the carbohydrates in the diet. Dietary glucose is the primary source of glycerol phosphate.

The more carbohydrates consumed, the more glycerol phosphate available, and so the more fat can accumulate. For this reason alone, it may be impossible to store excess body fat without at least some carbohydrates in the diet and without the ongoing metabolism of these dietary carbohydrates to provide glucose and the necessary glycerol phosphate.

Thus, the storage of fat, and therefore the production and maintenance of obesity, cannot take place unless glucose is being metabolized. Since glucose cannot be used by most tissues without the presence of insulin, it also may be stated categorically that obesity is impossible in the absence of adequate tissue concentrations of insulin.

Thus an abundant supply of carbohydrate food exerts a powerful influence in directing the stream of glucose metabolism into lipogenesis, whereas a relatively low carbohydrate intake tends to minimize the storage of fat."

Insulin works to deposit calories as fat and to inhibit the use of that fat for fuel. Dietary carbohydrates are required to allow this fat storage to occur. Since glucose is the primary stimulator of insulin secretion, the more carbohydrates consumed—or the more refined the carbohydrates—the greater the insulin secretion, and thus the greater the accumulation of fat.

"Carbohydrates are driving insulin which is driving fat." 

Please click on the film icon() to see video

How Fat Gets Burned
by Dr. Eric Berg

    

CARBOHYDRATE "GLUCOSE" METABOLISM

Most carbohydrates provide about 4 kcal/gr in their pure dry form. However, most prepared carbohydrate foods (fresh bread, cooked rice/pasta/potato, juices) contain more water than carbohydrate, which "dilutes" out the calorie count somewhat. Thus 100 grams of mashed potatoes contains only 100 kcal or so (before you add the butter or gravy!). Granulated sugar, on the other hand, is pure dry carbohydrate, so the 4 grams in a level teaspoon provides 16 kcal. Once eaten, most carbohydrates are digested and turned into glucose, which is also what we commonly call blood sugar. The one major exception to this rule is fructose, which metabolically cannot be made directly into glucose.

At any point in time in a healthy non-diabetic individual, there are just a couple of "teaspoons" of free glucose (about 40 kcal worth) in the body's circulation (ie. the bloodstream). This means that when you digest and absorb a cup of mashed potatoes or rice, most of the 200 kcal of glucose entering the bloodstream when it gets digested has to be rapidly cleared to someplace else to keep blood sugar in the normal range. If it weren't, blood sugar would rise to more than twice normal within 2 hrs after a meal, and you'd have an instant case of diabetes. Both types of diabetes are diseases caused by the body's inability to dispose of glucose entering the bloodstream. It comes in two general varieties—Type-1 if your body can't make insulin, and Type-2 if you can make insulin but your cells tend to ignore the insulin signal (aka insulin resistance).

So where does glucose go when it leaves the bloodstream? Normally much of it gets taken up into muscle and burned immediately or stored as little starchlike granules (glycogen) in the cells for later use. Your liver also stores some glucose as glycogen, which it then releases to keep blood sugar normal overnight or during prolonged exercise. And some ingested glucose is used "realtime" by your brain to keep the lights on. But an adult at rest burns at most 50 kcal of glucose per hour, so at least half of that cup of mashed potatoes has to be promptly tucked away in storage, preferably as glycogen.

If you have insulin resistance, your rate of glycogen synthesis in response to eating carbohydrates is considerably impaired. Even if you're adept at storing carbs, there's only so much glycogen that your muscles and liver can store—somewhere between 1000 and 2000 kcal in an adult, depending on how big your muscles are and your training status (exercise training can increase the amount of stored glycogen).

So what happens when you eat more carbs than you can burn right away and your glycogen reserves are already full? Rather than let your blood sugar skyrocket up to diabetic levels, your liver, and to some degree your fat cells, go to work turning that extra glucose into fat—a process called lipogenesis. Once that glucose (or fructose) is made into fat, there is no way back—humans can't make fat back into blood sugar—so lipogenesis is a metabolic one-way street, ending in what for many people becomes a crowded parking lot (your fat cells).

Metabolic Syndrome

Metabolic Syndrome describes a collection of metabolic abnormalities. These derangements in combination are an indication of type 2 diabetes and cardiovascular disease. The common thread linking an ever growing constellation of abnormalities is insulin resistance. Insulin resistance is defined as a diminished response to a given concentration of insulin. While insulin resistance may be doing the dirty work at the cellular level, the ringleader of the metabolic syndrome crime syndicate is dietary carbohydrate. Since the inability to properly metabolize dietary carbohydrate is the direct result when insulin action is impaired, from a functional perspective, insulin resistance can be more accurately described as carbohydrate intolerance

Obesity is the result of a metabolic disorder since the cells can only accept glucose using insulin produced by the pancreas. Insulin carries glucose from the bloodstream into cells where it is used as fuel. When a cell is healthy it has a large number of insulin receptors. If the cell is exposed to high insulin levels due to an almost permanent presence of glucose—caused by excessive consumption of carbohydrates and refined sugars—cells adapt by reducing the amount of insulin receptors on their surface. This causes the cell to desensitize or become insulin resistant.

By having excess blood glucose, the pancreas orders more insulin production, allowing type 2 diabetes to trigger. By definition, a diabetic is someone who has high levels of blood sugar because their body is unable to move glucose into the cells. This vicious circle is one of the leading causes of:

  • arthritis
  • autoimmune disorders
  • blindness
  • cerebral exhaustion
  • cognitive impairment and problems thinking
  • coronary heart disease (CHD)
  • creation and retention of fat
  • degeneration of the brain and its functioning
  • dementia
  • depletion of neurotransmitters including: serotonin, epinephrine,
    norepinephrine, dopamine and GABA
  • formation of Alzheimer's characteristic plaques
  • heart disease such as hypertension
  • increased inflammation
  • inflammatory disorders
  • kidney disease
  • neurological disorders (such as Alzheimer)
  • premature death
  • promotes cell growth
  • reduction of vitamin B and magnesium
  • stroke
  • triggers glycation
  • vital brain tissue shrinkage

Metabolic Syndrome Raises Your Risk of Vitamin E Deficiency
   August 08, 2016 www.mercola.com

Obese people with metabolic syndrome are at increased risk for vitamin E deficiency, in part because they need more vitamin E to begin with (due to increased oxidative stress), and in part because their condition impairs their body's utilization of vitamin E.16,17

Metabolic syndrome refers to a cluster of symptoms that include excess abdominal fat, high blood pressure, low HDL cholesterol, high blood sugar and elevated triglycerides. As noted by Maret Traber, Ph.D., who is a principal investigator with the Linus Pauling Institute:18

    "Vitamin E is associated with lipids, or the fats found in the blood, but it's mostly just a micronutrient that's going along for the ride ... [T]issues of obese people are rejecting intake of some of these lipids because they already have enough fat ... In the process they also reject the associated vitamin E."

Taking your vitamin E with some healthy fat, such as coconut oil or avocado can help increase the bioavailability of the vitamin E.

Reference:
[16,18] Science Daily November 2, 2015
[17]      Science Daily October 7, 2015

ARTICLES

Cancer as a Metabolic Disease

Elevated Blood Sugar & Cancer Growth

7 Factors to Consider if You're Told Your Cholesterol Is Too High

Fat, Not Glucose, is the Preferred Fuel for Your Body

Time Magazine: We Were Wrong About Saturated Fats

Government admits it was wrong about Cholesterol

When you lose weight, where does the fat go?

Sugar Deceptions Exposed

The Clinical Use of Nutritional Ketosis

Margarine Facts

Margarine Devastating Consequences

How margarine is really made?

Sun Exposure Improves Immune Function

Nutritional Ketosis & Cancer

The Metabolic Theory of Cancer and the Key to Cancer Prevention and Recovery

The Microbiome Solution, Healing Your Body From the Inside Out

Insulin, Not Cholesterol, the True Culprit in Heart Disease

What's More Effective for Weight Loss, Eating Right or Exercising?

10 Banned Foods Americans Should Stop Eating

Fat for Fuel: My Most Significant Book

Diet and Mental Health

Magnesium: An invisible deficiency that could be harming your Health

B Vitamins Improve Brain Health, Cognition, Psychiatric Problems and Mood Disorders

High-Carb Diet May Increase Your Risk of Dementia

Gluten-Free Diets Are Beneficial for Many — Not Just Those With Celiac Disease

Fat for Fuel: Why dietary fat, not glucose, is the Preferred Body Fuel

How a High-Fat Diet Helps Starve Cancer

Elevated Blood Sugar Sets the Stage for Cancer Growth

Cancer-Preventing Properties of Lemongrass

Immune system can create cancerous DNA mutations when fighting off infection

Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy

 

   

 

TREATING TYPE-2 DIABETES AS CARBOHYDRATE INTOLERANCE
Excerpt from "The Art and Science of Low Carbohydrate Living" by Phinney, Stephen; Volek, Jeff (2011-07-08)"

The hallmark of type-2 diabetes is insulin resistance, but the actual biology of its underlying cause remains obscure. However, the two best predictors of who will develop diabetes in a cohort of healthy subjects are biomarkers of inflammation (such as C-reactive protein [CRP] and interleukin-6 [IL-6]) and the biomarker of lipogenesis, palmitoleic acid (POA) in the serum cholesteryl ester fraction. So absent a better explanation of the root cause of this disease, it makes sense that it is driven by inflammation and the diversion of dietary carbohydrate into secondary disposal pathways. Furthermore, these two processes are mechanistically linked together by increased Reactive Oxygen Species (ROS) production damaging membranes, leading to insulin resistance.

If this is indeed a primary underlying pathophysiology of type-2 diabetes, then it follows that the optimum treatment of type-2 diabetes is reduced dietary carbohydrate intake. After all, very low carbohydrate diets reduce the body's level of inflammation, particularly in conditions such as metabolic syndrome in which it is typically elevated. And restricting carbohydrate intake reduces the total burden of glucose needing disposal, taking the pressure off of secondary disposal pathways like lipogenesis.

On the continuum of insulin resistance, impaired glucose tolerance and more generally metabolic syndrome often progress to overt type-2 diabetes, and therefore the latter represents a more severe form of carbohydrate intolerance. This may mean that in its long-term management, daily carbohydrate intake has to be kept lower in a type-2 diabetic than in someone with less severe insulin resistance. But it also means that a well formulated low carbohydrate diet will tend to produce striking improvements when implemented in type-2 diabetics.

So what evidence is there that this approach actually works? That depends upon who you ask. The American Diabetes Association has been strongly against low carbohydrate diets for decades, but recently altered their position to acknowledge that there may be a role for diets lower in carbohydrate than they have previously been advocating.

And then there is clinical experience and the published literature. Let's start with a clinical case. This case was the first patient that Steve Phinney ever put on a ketogenic diet, occurring during his medical residency under the direction of Dr. Ethan Sims at the University of Vermont. The outcome for this patient was so remarkable that it helped shape Steve Phinney's research career. ["The Art and Science of Low Carbohydrate Living" by Phinney, Stephen; Volek, Jeff (2011-07-08]

See below the video presentation
"The Many Facets of Keto-Adaptation: Health, Performance, and Beyond"

Defining Carbohydrate Intolerance

Given this emerging understanding of dietary carbohydrate as both an underlying cause and exacerbator of extant insulin resistance, it is instructive to view insulin resistance, metabolic syndrome and type-2 diabetes as carbohydrate intolerant conditions. What does carbohydrate intolerance mean? In medicine, intolerance is characterized by extreme sensitivity (in a negative way) or allergy to a drug, food, or other substance. Common forms of food intolerances include abnormal responses to lactose and gluten ingestion that in both cases promptly improve when the offending substances are restricted in the diet. In a person intolerant to carbohydrate, there is an exaggerated glucose and insulin response to a given amount of carbohydrate ingested.

A more insidious manifestation of insulin resistance, because of impaired glucose uptake into muscle, is a propensity to divert ingested carbohydrate to the liver where it is converted to fat. Metabolism of carbohydrate through de novo lipogenesis leads to increased plasma triglycerides and dyslipidemia. This is partially driven by a down-regulation of the insulin response and decreased glucose uptake in extrahepatic tissues.

Less well understood is how dietary carbohydrate impacts immune function and inflammatory mechanisms, but another facet of carbohydrate intolerance is likely an aberrant inflammatory response to carbohydrate intake. Clearly the normal response to carbohydrate in insulin sensitive tissues is disturbed in insulin resistance, which subscribes to the definition of intolerance. Put simply, consuming too much carbohydrate is like metabolic kryptonite if you already have insulin resistance.

Please click on the film icon() to see video

The Many Facets of Keto-Adaptation:
Health, Performance, and Beyond

by Jeff Volek
Dr. Jeff Volek is a Full Professor in the Department of Kinesiology
at the University of Connecticut

  

 

Wheat in Human Health (Gluten)

Today's wheat originates from the genetic alterations of Norman Borlaug, sponsored by the Rockefeller Foundation. From 1964 to 1979 he directed the International Center for Improvement of Maize and Wheat in Mexico. Since the forties, his work in research programs developed in Mexico laid the foundation of the "green revolution" and the variety selected by Borlaug showed a great adaptation to almost any type of climate, altitude and time of planting. Borlaug's wheat spread throughout the world and showed unprecedented performance. He developed varieties of high-yielding wheat resistant to disease in Mexico and introduced varieties adapted to India and Pakistan in the fifties and sixties, for which he received the Nobel Peace Prize in 1970.

Among the most common and consumed are the:

  • Common wheat most widely cultivated in the world (Triticum aestivum)
  • Wheat for making macaroni, spaghetti and other pastas
    and couscous semolina (Triticum durum)
  • Wheat for cookies (Triticum compactum)

These wheat contain a protein called gliadin acting as an opiate in the brain, which stimulates appetite, to the point that makes us consume an average of 440 additional calories per day, blocking the leptin hormone (our natural satiation mechanism). It also contains amylopectin A which is a super-carbohydrate that is converted to glucose in the blood more easily.

Gliadins are known for their role, along with glutenin, in the formation of gluten. These proteins are essential

to allow the bread to rise during preparation and gives it its shape during cooking. They are associated with one of the most important nutritional diseases such as celiac disease, accelerates obesity, aging, renal dysfunction, dementia, atherosclerosis and arthritis. It also produces advanced glycation affecting collagen and elastin which are caramelized.

Dr. Alessio Fasano, from Harvard University, found a direct link between the consumption of gluten and increased intestinal permeability and generalized inflammation throughout the body. The dangers of intestinal permeability are even more serious than we thought, as recent findings suggest that the inflammation caused by the loss of intestinal integrity may result in blood brain barrier permeability.

Gluten enhances the lipopolysaccharide(LPS) which is a combination of lipids (fat) and sugars, being a major component of the outer membrane of certain Gram negative bacteria which are abundant in the gut and can represent up to 70% of intestinal flora. LPS induces aggressive inflammatory response as it finds its way into the bloodstream. Certain diseases such as Alzheimer's, multiple sclerosis, inflammatory bowel diseases, diabetes, Parkinson, amyotrophic lateral sclerosis, rheumatoid arthritis, lupus, depression and even autism are linked to the LPS endotoxin. LPS levels in the blood indicate inflammation not only in general, but also intestinal permeability.

These findings have led some experts to question whether one of the main instigators of disease is not in the brain or spine, but in the intestine. In other words, it is possible that scientists have been looking for the answer in the wrong place all these years.

Please click on the film icon() to see video

Is Gluten Free Healthy? The REAL Truth About Grains
by Thomas DeLauer

  

How Gluten Destroys Thyroid Health

It's a case of mistaken identity. The molecular structure of gliadin, the protein portion of gluten, closely resembles that of the thyroid gland. When gliadin breaches the protective barrier of the gut, and enters the bloodstream, the immune system tags it for destruction. These antibodies to gliadin also cause the body to attack thyroid tissue. This means if you have autoimmune thyroid disease (AITD) and you eat foods containing gluten, your immune system will attack your thyroid.

Even worse, the immune response to gluten can last up to 6 months each time you eat it. This explains why it is critical to eliminate gluten completely from your diet if you have AITD. There's no "80/20" rule when it comes to gluten. Being "mostly" gluten-free isn't going to cut it. If you're gluten intolerant, you have to be 100% gluten-free to prevent immune destruction of your thyroid.

Read the complete article:

[ The Most Important Thing You May Not Know About Hypothyroidism ]

[ The Gluten-Thyroid Connection

Alternative to Glucose Metabolism

The alternative to glucose metabolism is one of the best hypotheses available for the control of obesity and Weight modulation. It is practical and viable producing concrete results. The following are some of the documented health benefits:

  • Acts as an antidepressant
  • Calms inflammation in the brain and throughout the body
  • Decrease mitochondrial oxidative stress
  • Enhances heart function by improving efficiency and strength while utilizing
    less oxygen. Increase the hydraulic efficiency of the heart by 25% in
    comparison to glucose
  • Enhances anti-inflammatory pathways
  • Enhances DNA repair
  • Enhances Glutathione production
  • Help stabilize mtDNA
  • Increases bioenergetic genes
  • Increases Iron absorption
  • Increases mitochondrial biogenesis
  • Improves sleep apnea
  • Improves hypertension and gastroesophageal reflux disease (GERD)
  • Improves overall health and increases life span
  • Increases antioxidant pathways
  • Increases cellular resistance to stress and improves recovery after surgery
  • Increases sperm vitality and motility, important for successful fertilization
  • Maintains optimum cell membrane composition
  • May be helpful in alleviating the detrimental effects of almost every disease
    state due to the ability to calm inflammation and increase oxygen utilization
  • Mitigates symptoms of autism
  • Mitigates the effects of insulin resistance by mimicking the acute metabolic
    effects of insulin
  • Optimizes Mitochondria energy production (ATP)
  • Prevents migraine headaches
  • Promotes Brain ATP in the Hippocampus
  • Protects against brain damage caused by cerebral hypoxia and improves survival
  • Protects against brain damage caused by stroke
  • Protects against cancer, especially brain cancer
  • Protects against diabetes. Reduces the liver's output of glucose and increases
    insulin production, thus improving blood sugar control and carbohydrate tolerance
  • Protects against epileptic seizures, including difficult-to-treat drug-resistant seizures
  • Protects against infantile spasms and narcolepsy
  • Protects against microbial infections
  • Protects against neurodegenerative diseases including Alzheimer's, Parkinson's, Huntington's, and ALS(Amyotrophic Lateral Sclerosis)
  • Protects against polycystic ovary syndrome
  • Protects against symptoms of hypoglycemia
  • Protects brain cells from chemical toxins
  • Protects the brain against damage caused by physical trauma
  • Protects the gallbladder from gallstones during major weight loss
  • Provides an alternative high-potency energy source that can be used by every
    organ in the body, except for the liver
  • Reduces the formation of destructive free radicals
  • Supplies the substrate from which new neurons can be synthesized
  • Useful aid for weight management and obesity treatment

What are NSAIDs?  ]

 

You can train your body to burn fat by changing your diet over a period of a few weeks, thereby turning blood sugar and glycogen into secondary fuels. Once you make this transition, you can then train harder, perform longer, and recover faster.

A diet consisting mostly of healthy higher-quality fat and protein can support remarkable growth, physical well-being and function, promoting the capabilities of the individual over commonly assumed societal norms.

Low carbohydrate diets are anti-inflammatory, producing less oxidative stress during exercise and more rapid recovery between exercise sessions.

Physiological adaptation to low carbohydrate living allows much greater reliance on body fat, not just at rest but also during exercise, meaning much less dependence on muscle glycogen and less need to reload with carbohydrates during and after exercise.

Low carbohydrate adaptation accelerates the body's use of saturated fats for fuel, allowing a high intake of total fats (including saturates) without risk.

At the practical level, effective training for both endurance and strength/power sports can be done by individuals adapted to carbohydrate restricted diets, with desirable changes in body composition and power-to-weight ratios.

Click to follow the Link
Reference:
www.cdc.gov/nchs/fastats/obesity-overweight.htm
www.bbc.com/news/business-28212223
Good Calories, Bad Calories, Gary Taubes
Stop Alzheimer's Now!, Bruce Fife, N.D.
The Art and Science of Low Carbohydrate Living, Phinney, Stephen; Volek, Jeff (2011-07-08)
Ketogenic Diet: Connection between Mitochondria and Diet, Gabriela Segura, MD, Consultant Cardiologist,  Friday, 9 August 2013
Davis, William (2014-09-17), "Sin trigo, gracias" Penguin Random House Grupo Editorial España

Please click on the film icon() to see video

Obesity Warrior
Forget calories. Forget cravings. Forget dieting.

Fat Does Not Make You Fat
Eating fat does not make you fat or sick!

How to Get Fat Without Really Trying
The Skinny on Obesity

University of California Television (UCTV)

Ketogenic Diet Resource

 

KETOGENIC DIET: CONNECTION BETWEEN MITOCHONDRIA AND DIET
   Gabriela Segura, MD— August 2013

Introduction

Ketosis is an often misunderstood subject. Its presence is thought to be equal to starvation or a warning sign of something going wrong in your metabolism. But nothing could be farther from the truth, except if you are an ill-treated Type-1 diabetic person.[1] Ketones—contrary to popular belief and myth—are a much needed and essential healing energy source in our cells that comes from the normal metabolism of fat.

The entire body uses ketones in a more safe and effective way that the energy source coming from carbohydrates—sugar AKA glucose. Our bodies will produce ketones if we eat a diet devoid of carbs or a low carb diet (less than 60 grams of carbs per day).[2] By eating a very low carb diet or no carbs at all (like a caveman) we become keto-adapted.

In fact, what is known today as the ketogenic diet was the number one treatment for epilepsy until Big Pharma arrived with its dangerous cocktails of anti-epileptic drugs. It took several decades before we heard again about this diet, thanks in part to a parent who demanded it for his 20-month-old boy with severe seizures. The boy's father had to find out about the ketogenic diet in a library as it was never mentioned as an option by his neurologist. After only 4 days on the diet, his seizures stopped and never returned.[3] The Charlie Foundation was born after the kid's name and his successful recovery, but nowadays the ketogenic diet is available to the entire world and it's spreading by word of mouth thanks to its healing effects.

It is not only used as a healthy lifestyle, it is also used for conditions such as infantile spasms, epilepsy, autism, brain tumors, Alzheimer's disease, Lou Gehrig's disease, depression, stroke, head trauma, Parkinson's disease, migraine, sleep disorders, schizophrenia, anxiety, ADHD, irritability, polycystic ovarian disease, irritable bowel syndrome, gastroesophageal reflux, obesity, cardiovascular disease, acne, type 2 diabetes, tremors, respiratory failure and virtually every neurological problem but also cancer, and conditions were tissues need to recover after a loss of oxygen.[4]

Our body organs and tissues work much better when they use ketones as a source of fuel, including the brain, heart and the core of our kidneys. If you ever had a chance to see a heart working in real time, you might have noticed the thick fatty tissue that surrounds it. In fact, heart surgeons get to see this every day. A happy beating heart is one that is surrounded by layers of healthy fat. Both the heart and the brain run at least 25% more efficiently on ketones than on blood sugar.

Ketones are the ideal fuel for our bodies unlike glucose—which is damaging, less stable, more excitatory and in fact shortens your life span. Ketones are non-glycating, which is to say, they don't have a caramelizing aging effect on your body. A healthy ketosis also helps starve cancer cells as they are unable to use ketones for fuel, relying on glucose alone for their growth.[5] The energy producing factories of our cells—the mitochondria—work much better on a ketogenic diet as they are able to increase energy levels on a stable, long-burning, efficient, and steady way. Not only that, a ketogenic diet induces epigenetic changes[6] which increases the energetic output of our mitochondria, reduces the production of damaging free radicals, and favors the production of GABA—a major inhibitory brain chemical. GABA has an essential relaxing influence and its favored production by ketosis also reduces the toxic effects of excitatory pathways in our brains. Furthermore, recent data suggests that ketosis alleviates pain other than having an overall anti-inflammatory effect.[7]

The ketogenic diet acts on multiple levels at once, something that no drug has been able to mimic. This is because mitochondria is specifically designed to use fat for energy. When our mitochondria uses "healthy high-quality fat" as an energetic source, its toxic load is decreased, expression of energy producing genes are increased, its energetic output is increased, and the load of inflammatory energetic-end-products is decreased.

The key of these miraculous healing effects relies in the fact that fat metabolism and its generation of ketone bodies (beta-hydroxybutyrate & acetoacetate) by the liver can only occur within the mitochondrion, leaving chemicals within the cell but outside the mitochondria readily available to stimulate powerful anti-inflammatory antioxidants. The status of our mitochondria is the ultimate key for optimal health and while it is true that some of us might need extra support in the form of nutritional supplementation to heal these much needed energy factories, the diet still remains the ultimate key for a proper balance.

Our modern world's staple energetic source is sugar which needs to be processed first in the cell soup before it can be passed into the energy factory of the cell—the mitochondrion. Energy sources from fat don't require this processing; it goes directly into the mitochondria for energetic uses. That is, it is more complicated to create energy out of sugar than out of fat. As Christian B. Allan, PhD and Wolfgang Lutz, MD said in their book "Life Without Bread":

Carbohydrates are not required to obtain energy. Fat supplies more energy than a comparable amount of carbohydrate, and low-carbohydrate diets tend to make your system of producing energy more efficient. Furthermore, many organs prefer fat for energy.

The fact is you get more energy per molecule of fat than sugar. How many chronic and autoimmune diseases have an energy deficit component? How about chronic fatigue? Fibromyalgia? Rheumatoid Arthritis? Multiple Sclerosis? Cancer? Back to Allan and Lutz:

    Mitochondria are the power plants of the cell. Because they produce most of the energy in the body, the amount of energy available is based on how well the mitochondria are working. Whenever you think of energy, think of all those mitochondria churning out ATP to make the entire body function correctly. The amount of mitochondria in each cell varies, but up to 50% of the total cell volume can be mitochondria. When you get tired, don't just assume you need more carbohydrates; instead, think in terms of how you can maximize your mitochondrial energy production…

If you could shrink to a small enough size to get inside the mitochondria, what would you discover? The first thing you'd learn is that the mitochondria are primarily designed to use fat for energy!

In short, let fat be thy medicine and medicine be thy fat!

You will think that with all of this information we would see ketogenic diets recommended right and left by our health care providers, but alas, that is not the case. Mainstream nutritionists recommend carbohydrates—sugar as the main staple of our diets. The problem with this (and there are several of them) is that in the presence of a high carb diet we are unable to produce ketones from the metabolism of fats, thus, depriving ours bodies from much healing ketone production. The fact that we live in a world which uses glucose as a primary fuel means that we eat a very non healing food in more ways than one.

    I have been doing the low carb diet for about a week and a half now and I must say, I am really starting to feel amazing! The first few days my head hurt, I felt lethargic, and my legs felt so heavy. But after I got past that, I have so much energy. I don't get tired anymore around 3pm. The best part is, I am not constantly thinking and obsessing about food. I feel a real sense of inner calm. My skin looks better, my hair looks better too. I have been having bacon and eggs for breakfast, a pork chop or other piece of meat for lunch, and usually some pork and sometimes some green beans for dinner. I have also lost some weight! Woo hoo!—Angela, United States. Sott.net forum.

We have been on a ketogenic diet for nearly three million years and it has made us human. It was the lifestyle in which our brains got nurtured and evolved. But not anymore, unless we all make an effort to reclaim this lost wisdom. Nowadays the human brain is not only shrinking, but brain atrophy is the norm as we age and get plagued with diseases such as Alzheimer's disease, Parkinson's disease, senile dementia and so forth.

In the mean time new research is starting to elucidate the key role of our mitochondria in the regulation of the cell-cycle—the vital process by which a single celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. In the complicated and highly choreographed events surrounding cell-cycle progression, mitochondria are not simple bystanders merely producing energy but instead are full-fledged participants.[8] Given the significant amount of energy needed to make all the nutrients required for cell division, it makes sense that some coordination existed. This long ignored and overlooked connection between the mitochondria and the cell-cycle is something that is worthy of considerable more attention as we understand the role of diet in our bodies. We'll have to take a closer look to this subject of ketosis, as it really holds the key to unlock our transformational pathways that will lead us to an outstanding healthy living.

Mitochondrial Dysfunction

Mitochondria are best known as the powerhouses of our cells since they produce the cell's energy. But they also lead the genetic orchestra which regulates how every cell ages, divides, and dies. They help dictate which genes are switched on or off in every single cell of our organism. They also provide the fuel needed to make new brain connections, repair and regenerate our bodies.

Whether we are housewives, sportsmen or labor people, energy is a topic that concerns us all, every day and in every way. Our well being, behavior and ability to perform the tasks in front of us to do is our individual measure of energy. How do we derive energy from foods that we eat?

There are many man-made myths surrounding energy production in the body and which foods supply energy. Mainstream science says that carbohydrates are what mitochondria use as fuel for energy production. This process is called oxidative metabolism because oxygen is consumed in the process. The energy produced by mitochondria is stored in a chemical "battery", a unique molecule called adenosine triphosphate (ATP). Energy-packed ATP can then be transported throughout the cell, releasing energy on demand of specific enzymes. In addition to the fuel they produce, mitochondria also create a by-product related to oxygen called reactive oxygen species (ROS)—free radicals. But what we are not told is that mitochondria were specifically designed to use fat for energy, not carbohydrate.

    Source: Christian B. Allan, PhD and Wolfgang Lutz, MD, Life Without Bread.

    There are several very complicated steps in making ATP within mitochondria, but a look at 5 major parts of ATP production will be all that you need to know in order to understand how energy is created within our mitochondria and why fats are the key to optimize their function. Don't get focused on specific names, just look at the whole picture:

    Step 1—Transportation of Food-Based Fuel Source into the Mitochondria
    Fuel must first get into the mitochondria where all the action happens. Fuel can come from carbs or it can come from fats. Fatty acids are the chemical name for fat, and medium and large sized fatty acids get into the mitochondria completely intact with the help of L-carnitine. Think of L-carnitine as a subway train that transports fatty acids into the mitochondria. L-carnitine (from the Greek word carnis means meat or flesh) is chiefly found in animal products.

    Fuel coming from carbs needs to get broken down first outside the mitochondria and the product of this breakdown (pyruvate) is the one who gets transported inside the mitochondria, or it can be used to produce energy in a very inefficient way outside the mitochondria through anaerobic metabolism which produces ATP when oxygen is not present.

    Step 2—Fuel is Converted into Acetyl-CoA (Acetyl coenzyme A)
    When pyruvate—the product of breaking down carbs—enters the mitochondria, it first must be converted into acetyl-CoA by an enzymatic reaction.

    Fatty acids that are already inside the mitochondria are broken down directly into acetyl-CoA in what is called beta-oxidation.

    Acetyl-CoA is the starting point of the next step in the production of ATP inside the mitochondria.

    Step 3—Oxidation of Acetyl-CoA and the Krebs Cycle
    The Krebs cycle (tricarboxylic acid cycle or citric acid cycle) is the one that oxidizes the acetyl-CoA, removing thus electrons from acetyl-CoA and producing carbon dioxide as a by-product in the presence of oxygen inside the mitochondria.

    Step 4—Electrons are Transported through the Respiratory Chain
    The electrons obtained from acetyl-CoA—which ultimately came from carbs or fats—are shuttled through many molecules as part of the electron transport chain inside the mitochondria. Some molecules are proteins, others are cofactors molecules. One of these cofactors is an important substance found mainly in animal foods and it is called coenzyme Q10. Without it, mitochondrial energy production would be minimal. This is the same coenzyme Q10 that statins drug block producing crippling effects on people's health. Step 4 is also where water is produced when oxygen accepts the electrons.

    Step 5—Oxidative phosphorylation
    As electrons travel down the electron transport chain, they cause electrical fluctuations (or chemical gradients) between the inner and outer membrane in the mitochondria. These chemical gradients are the driving forces that produce ATP in what is called oxidative phosphorylation. Then the ATP is transported outside the mitochondria for the cell to use as energy for any of its thousands of biochemical reactions.

    But why is "healthy high-quality Fat" better than Carbs?

    If there were no mitochondria, then fat metabolism for energy would be limited and not very efficient. But nature provided us during our evolution with mitochondria that specifically uses fat for energy. Fat is the fueled that animals use to travel great distances, hunt, work, and play since fat gives more packed-energy ATPs than carbs. Biochemically, it makes sense that if we are higher mammals who have mitochondria, then we need to eat fat. Whereas carb metabolism yields 36 ATP molecules from a glucose molecule, a fat metabolism yields 48 ATP molecules from a fatty acid molecule inside the mitochondria. Fat supplies more energy(33% more) for the same amount of food compared to carbs. But not only that, the burning of fat by the mitochondria—beta oxidation—produces ketone bodies that stabilizes overexcitation and oxidative stress in the brain related to all its diseases, it also causes epigenetic changes that produce healthy and energetic mitochondria and decreasing the overproduction of damaging and inflammatory free radicals among many other things!

Mitochondria regulate cellular suicide—apoptosis, so that old and dysfunctional cells which need to die will do so, leaving space for new ones to come into the scene. But when mitochondria function becomes impaired and send signals that tell normal cells to die, things go wrong. For instance, the destruction of brain cells leads to every single neurodegenerative condition known including Alzheimer's disease, Parkinson's disease and so forth. Mitochondrial dysfunction has wide-ranging implications, as the health of the mitochondria intimately affects every single cell, tissue and organ within your body.

The catalysts for this destruction is usually uncontrolled free radical production which cause oxidative damage to tissues, fat, proteins, DNA; causing them to rust. This damage, called oxidative stress, is at the basis of oxidized cholesterol, stiff arteries (rusty pipes) and brain damage. Oxidative stress is a key player in dementia as well as autism.

We produce our own anti-oxidants to keep a check on free radical production, but these systems are easily overwhelmed by a toxic environment and a high carb diet, in other words, by today's lifestyle and diet.

Mitochondria also have interesting characteristics which differentiate them from all other structural parts of our cells. For instance, they have their own DNA (referred as mtDNA) which is separate from the widely known DNA in the nucleus (referred as n-DNA). Mitochondrial DNA comes for the most part from the mother line, which is why mitochondria is also considered as your feminine life force. This mtDNA is arranged in a ring configuration and it lacks a protective protein surrounding, leaving its genetic code vulnerable to free radical damage. If you don't eat enough animal fats, you can't build a functional mitochondrial membrane which will keep it healthy and prevent them from dying.

If you have any kind of inflammation from anywhere in your body, you damage your mitochondria. The loss of function or death of mitochondria is present in pretty much every disease. Dietary and environmental factors lead to oxidative stress and thus to mitochondrial injury as the final common pathway of diseases or illnesses.

Autism, ADHD, Parkinson's, depression, anxiety, bipolar disease, brain aging are all linked with mitochondrial dysfunction from oxidative stress. Mitochondrial dysfunction contributes to congestive heart failure, type-2 diabetes, autoimmune disorders, aging, cancer, and other diseases.

Whereas the nDNA provides the information your cells need to code for proteins that control metabolism, repair, and structural integrity of your body, it is the mtDNA which directs the production and utilization of your life energy. A cell can still commit suicide (apoptosis) even when it has no nucleus nor nDNA.

Because of their energetic role, the cells of tissues and organs which require more energy to function are richer in mitochondrial numbers. Cells in our brains, muscles, heart, kidney and liver contain thousands of mitochondria, comprising up to 40% of the cell's mass. According to Prof. Enzo Nisoli, a human adult possesses more than ten million billion (1020) mitochondria, making up a full 10% of the total body weight.[9] Each cell contains hundreds of mitochondria and thousands of mtDNA.

Since mtDNA is less protected than nDNA because it has no "protein" coating (histones), it is exquisitely vulnerable to injury by destabilizing molecules such as neurotoxic pesticides, herbicides, excitotoxins, heavy metals and volatile chemicals among others. This tips-off the balance of free radical production to the extreme which then leads to oxidative stress damaging our mitochondria and its DNA. As a result we get over-excitation of cells and inflammation which is at the root of Parkinson's disease and other diseases, but also mood problems and behavior problems.

Enough energy means a happy and healthy life. It also reflects in our brains with focused and sharp thinking. Lack of energy means mood problems, dementia, and slowed mental function among others. Mitochondria are intricately linked to the ability of the prefrontal cortex—our brain's captain—to come fully online. Brain cells are loaded in mitochondria that produce the necessary energy to learn and memorize, and fire neurons harmoniously.

The sirtuin family of genes works by protecting and improving the health and function of your mitochondria.[10] They are positively influenced by a diet that is non-glycating (non- caramelizing aging effect on your body), i.e. a low carb diet as opposed to a high carb diet which induces mitochondrial dysfunction and formation of reactive oxygen species.

Another thing that contributes to mitochondrial dysfunction is latent viral infection such as the ones of the herpes family. Most, if not all of your "junk" DNA has viral-like properties. If a pathogenic virus takes hold of our DNA or RNA, it could lead to disease or cancer.

Herpes simplex virus is a widespread human pathogen and it goes right after our mitochondrial DNA. Herpes simplex virus establishes its latency in sensory neurons, a type of cell that is highly sensitive to the pathological effects of mtDNA damage.[11] A latent viral infection might be driving the brain cell loss in neurodegenerative diseases such as Alzheimer's disease.[12] As I speculated in Heart attacks, CFS(Chronic Fatigue Syndrome), herpes virus infection and the vagus nerve, a latent herpes virus infection might drive more diseases than we would like to admit.

Members of the herpes virus family (i.e. cytomegalovirus and Epstein-Barr virus which most people have as latent infections!), can go after our mitochondrial DNA, causing neurodegenerative diseases by mitochondrial dysfunction. But a ketogenic diet is the one thing that would help stabilize mtDNA since mitochondria runs the best on fat fuel. As it happens, Alzheimer's disease is the one condition where a ketogenic diet has its most potential healing effect.[4]

The role of mitochondrial dysfunction in our "modern" age maladies is a staggering one. Optimal energetic sources are essential if we are to heal from chronic ailments. It is our mitochondria which lies at the interface between the fuel from foods that come from our environment and our bodies' energy demands. And it is a metabolism based on fat fuel, a ketone metabolism, the one which signals epigenetic changes that maximizes energetic output within our mitochondria and help us heal.

    I am incredulous at how my body is responding. I think I am totally carb intolerant. I've struggled with extreme fatigue/exhaustion for so many years, even with improved sleep in a dark room that I can't tell you how wonderful it is to wake up in the morning, get out of bed and not long to crawl back in, going through the day by will mostly. Also chronic long-standing intestinal issues are finally resolving. A couple of people at work have made comments to the effect that I'm a "different woman", calmer, no more hyperness under pressure, stress seems to roll off of my back as well. I've lost a little weight and although I don't weigh myself, my clothes are definitely looser. I've had the round middle for so many years I was resigned to struggling to bend over to pull my shoes on!—Bluefyre, 56 years old, United States. Sott.net forum

Ketosis—Closer Look

The presence of ketones in the blood and urine, a condition known as ketosis, has been regarded as a negative situation, related to starvation. While it is true that ketones are produced during fasting, ketones are also produced in times of plenty, but not plenty of carbohydrates since a carb metabolism suppresses ketosis. In the absence of most carbs in the diet, ketones will form from fat to supply for energy. This is true even if lots of fats and enough protein are eaten, something that is hardly a starvation condition.

As we already saw, a ketogenic diet has been proved useful in a number of diseases, especially neurological ones. Strictly speaking, a ketogenic diet is a high "healthy high-quality fat" diet in which carbohydrates are either completely eliminated or nearly eliminated so that the body has the very bare minimum sources of glucose. That makes fats (fatty acids) a mandatory energetic fuel source for both the brain and other organs and tissues. If you are carb intake is high, you'll end up storing both the fat and the carbs in your fat tissue thanks to the hormone insulin. A ketogenic diet is not a high protein diet, which as it happens, can also stimulate insulin. It is basically a diet where you rely primarily on animal foods and especially their fats.

    I recently had my annual blood work done (cholesterol, etc.) During the review, my doctor said that everything looked great! He then encouraged me to continue on my great 'low fat, high fruit and veggie diet' that I must be following! I just smiled. Next visit I'm going to tell him about my real 'diet'. Lol—Sott.net forum.

Among the by-products of fat burning metabolism are the so called ketone bodies—acetoacetate, β-hydroxybutyrate and acetone—which are produced for the most part by the liver. When our bodies are running primarily on fats, large amounts of acetyl-CoA are produced which exceed the capacity of the Krebs cycle, leading to the making of these three ketone bodies within liver mitochondria. Our levels of ketone bodies in our blood go up and the brain readily uses them for energetic purposes. Ketone bodies cross the blood brain barrier very readily. Their solubility also makes them easily transportable by the blood to other organs and tissues. When ketone bodies are used as energy, they release acetyl-CoA which then goes to the Krebs cycle again to produce energy.

In children who were treated with the ketogenic diet to treat their epilepsy, it was seen that they become seizure-free even long after the diet ended, meaning that not only did the diet proved to be protective, but also it modified the activity of the disease, something that no drug has been able to do.[13] In Alzheimer's disease, as levels of ketone bodies rise, memory improves. People's starved brains finally receive the much needed fats they need! In fact, every single neurological disease is improved on the ketogenic diet.

The benefits of a ketogenic diet can be seen as fast as one week, developing gradually over a period of 3 weeks. There are several changes in gene expression involving metabolism, growth, development, and homeostasis among others.

The hippocampus is a region in your brain that is very vulnerable to stress which makes it lose its brain cells. The hippocampus has to do with memory, learning, and emotion. As it happens, a ketogenic diet promotes the codification of genes which creates mitochondria in the hippocampus, making more energy available. A larger mitochondrial load and more energy means more reserve to withstand much more stress.[14]

In some animal models, there is a 50% increase in the total number of mitochondria in the hippocampus, resulting in more brain ATP.[15] Other animal studies show how communication between brain cells in the hippocampus would remain smooth for 60% longer when exposed to a stressful stimulus compared to their counterparts who didn't had a ketogenic diet.[16] This is very important since too much stress can damage the hippocampus and its capacity to retrieve information, making you "absent-minded" or "brain-scattered", as well as affecting the ability of your prefrontal cortex to think and manage behavior.

A ketogenic diet also increases levels of the calming neurotransmitter—GABA—which then serves to calm down the overexcitation which is at the base of major neuro-degenerative diseases, but also anxiety and other mood problems. A ketogenic diet also increases antioxidant pathways that level the excess production of free radicals from a toxic environment. It also enhances anti-inflammatory pathways.

Ketosis also cleans our cells from proteins that act like "debris" and which contribute to aging by disrupting a proper functioning of the cell.[17] It basically does this by what is known as autophagy which preserves the health of cells and tissues by replacing outdated and damaged cellular components with fresh ones. This prevents degenerative diseases, aging, cancer, and protects you against microbial infections. A ketogenic diet not only rejuvenates you, it also makes a person much less susceptible to viruses and bacterial infections.[18] This is very relevant due to the increasing number of weird viral and bacterial infections that seem to be incoming from our upper atmosphere[19] (for more information see New Light on the Black Death: The Viral and Cosmic Connection), or due to high levels of radiation that creates more pathogenic strains (see Detoxify or Die: Natural Radiation Protection Therapies for Coping With the Fallout of the Fukushima Nuclear Meltdown). Either or, we are more vulnerable than ever due to the state of our mitochondria. But we can prepare for the worst with ketosis.

Ketone-enhanced autophagy is very important because autophagy can target viruses and bacteria that grow inside cells which are very problematical.[20] Intracellular viruses and bacteria can lead to severe mitochondrial dysfunction and ketosis remains by far our best chance against them.

Ketone bodies production through intermittent fasting and the ketogenic diet is the most promising treatment for mitochondrial dysfunction.[21] The longevity benefits seen caloric restriction research is due to the fact that our bodies shift to a fat burning metabolism within our mitochondria. With a ketogenic diet, we go into a fat burning metabolism without restricting our caloric intake.

Ketosis deals effectively with all the problems of a diet rich in carbs—the one recommended by mainstream science: anxiety, food cravings, irritability, tremors, and mood problems among others. It is a crime to discourage the consumption of a high "healthy high-quality fat" diet considering that a ketogenic diet shrinks tumors on human and animal models, and enhances our brain's resiliency against stress and toxicity.

In addition to increasing the production of our body's natural valium—GABA—the increased production of acetyl-CoA generated from the ketone bodies also drives the Krebs cycle (citric acid cycle) to increase mitochondrial NADH (reduced nicotinamide adenine nucleotide) which our body uses in over 450 vital biochemical reactions—including the cell signaling and assisting of the ongoing DNA repair. Because the ketone body beta-hydroxybutyrate is more energy rich than pyruvate, it produces more ATP. Ketosis also enhances the production of important anti-oxidants that deal with toxic elements from our environments, including glutathione.

A Paoli, A Rubini, J S Volek and K A Grimaldi.
Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets. European Journal of Clinical Nutrition (2013) 67, 789–796

Mitochondria from the hippocampus of ketogenic diet-fed animals are also resistant to mtDNA damage and are much less likely to commit cell suicide—apoptosis—at inappropriate times.

As Douglas C. Wallace, PhD, Director of the Center for Mitochondrial and Epigenomic Medicine says, "the ketogenic diet may act at multiple levels: It may decrease excitatory neuronal activity, increase the expression of bioenergetic genes, increase mitochondrial biogenesis and oxidative energy production, and increase mitochondrial NADPH production, thus decreasing mitochondrial oxidative stress."[21]

Keto-adaptation results in marked changes in how we construct and maintain optimum membrane ("mem-brain") composition, not only because of the healthy fats we provide through the diet, but also because of less free radical production and inflammatory mediators, along with more production of anti-oxidants. It is really the ideal balanced state.

Moreover, you might want to keep in mind this excerpt from "Human Brain Evolution: The Influence of Freshwater and Marine Food Resources"[22]:

    There are two key advantages to having ketone bodies as the main alternative fuel to glucose for the human brain.

  • First, humans normally have significant body fat stores, so there is an abundant supply of fatty acids to make ketones.
  • Second, using ketones to meet part of the brain's energy requirement when food availability is intermittent frees up some glucose for other uses and greatly reduces both the risk of detrimental muscle breakdown during glucose synthesis, as well as compromised function of other cells dependent on glucose, that is, red blood cells.
  • One interesting attribute of ketone uptake by the brain is that it is four to five times faster in newborns and infants than in adults. Hence, in a sense, the efficient use of ketones by the infant brain means that it arguably has a better fuel reserve than the adult brain. Although the role of ketones as a fuel reserve is important, in infants, they are more than just a reserve brain fuel—they are also the main substrate for brain lipid synthesis.

    I have hypothesized that evolution of a greater capacity to make ketones coevolved with human brain expansion. This increasing capacity was directly linked to evolving fatty acid reserves in body fat stores during fetal and neonatal development. To both expand brain size and increase its sophistication so remarkably would have required a reliable and copious energy supply for a very long period of time, probably at least a million, if not two million, years. Initially, and up to a point, the energy needs of a somewhat larger hominin brain could be met by glucose and short-term glucose reserves such as glycogen and glucose synthesis from amino acids. As hominins slowly began to evolve larger brains after having acquired a more secure and abundant food supply, further brain expansion would have depended on evolving significant fat stores and having reliable and rapid access to the fuel in those fat stores. Fat stores were necessary but were still not sufficient without a coincident increase in the capacity for ketogenesis. This unique combination of outstanding fuel store in body fat as well as rapid and abundant availability of ketones as a brain fuel that could seamlessly replace glucose was the key fuel reserve for expanding the hominin brain, a reserve that was apparently not available to other land-based mammals, including nonhuman primates.

It is indisputable that a ketogenic diet has protective effects in our brains. With all the evidence of its efficacy in mitochondrial dysfunction, it can be applied for all of us living in a highly stressful and toxic environment. Ketone bodies are healing bodies that helped us evolve and nowadays our mitochondria are busted in some way or another since the odds in this toxic world are against us. Obviously, there are going to be people with such damaged mtDNA or with mutations they were born with, who can't modify their systems (i.e. defects on L-carnitine metabolism), but even in some of those cases, they can halt or slow down further damage. Our healthy ancestors never had to deal with the levels of toxicity that we live nowadays and nevertheless, they ate optimally. Considering our current time and environment, the least we can do is eat optimally for our physiology.

The way to have healing ketone bodies circulating in our blood stream is to do a high fat, restricted carb and moderated protein diet. Coupled with intermittent fasting which will enhance the production of ketone bodies, and resistance training which will create mitochondria with healthier mtDNA, we can beat the odds against us.

What is considered nowadays a "normal diet" is actually an aberration based on the corruption of science which benefits Big Agra and Big Pharma. If we would go back in time to the days before the modern diet became normalized by corporative and agricultural interests, we will find that ketosis was the normal metabolic state. Today's human metabolic state is aberrant. It is time to change that.

Reference:
[1] A research member of sott.net's forum has diabetes type 1 and is doing the ketogenic diet. On normal circumstances, diabetics (including type I) report amazing results on a low-carbohydrate diet. See Dr. Bernstein's Diabetics Solution by Richard K. Bernstein, MD (Little, Brown and Company: 2007).
[2] It varies among each person, but the general range is between 0 and 70 grams of carbs plus moderate intake of protein, between 0.8 and 1.5 grams of protein per kg of ideal body weight. Pregnant women and children should not have their protein restricted.
[3] Ketogenic diets in seizure control and neurologic disorders by Eric Kossoff, MD, Johns Hopkins Hospital, Baltimore, Maryland. The Art and Science of Low Carbohydrate Living by Jeff S. Volek, PhD, Rd and Stephen D. Phinney, MD, PhD. Beyond Obesity, LLC , 2011.
[4]A Paoli, A Rubini, J S Volek and K A Grimaldi. Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets. European Journal of Clinical Nutrition (2013) 67, 789–796
[5] Rainer J Klement, Ulrike Kämmerer. Is there a role for carbohydrate restriction in the treatment and prevention of cancer? Nutr Metab (Lond). Oct 26, 2011; 8: 75.
[6] If the genetic code is the hardware for life, the epigenetic code is software that determines how the hardware behaves.
[7] David N. Ruskin and Susan A. Masino, The Nervous System and Metabolic Dysregulation: Emerging Evidence Converges on Ketogenic Diet Therapy. Front Neurosci. 2012; 6: 33.
[8] Finkel T, Hwang PM. The Krebs cycle meets the cell cycle: mitochondria and the G1-S transition. Proc Natl Acad Sci U S A. 2009 Jul 21;106(29):11825-6.
[9] Matthews C.M. Nurturing your divine feminine. Proc (Bayl Univ Med Cent). 2011 July; 24(3): 248.
[10] Hipkiss AR. Energy metabolism, altered proteins, sirtuins and ageing: converging mechanisms? Biogerontology. 2008 Feb;9(1):49-55.
[11] Saffran HA, Pare JM, Corcoran JA, et al. Herpes simplex virus eliminates host mitochondrial DNA. EMBO Rep. 2007 Feb;8(2):188-93.
[12] Porcellini E, Carbone I, et al. Alzheimer's disease gene signature says: beware of brain viral infections. Immun Ageing. 2010 Dec 14;7:16.
[13] Gasior M, Rogawski MA, Hartman AL. Neuroprotective and disease-modifying effects of the ketogenic diet. Behav Pharmacol. 2006 Sep;17(5-6):431-9.
[14] Maalouf M, Rho JM, Mattson MP. The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies. Brain Res Rev. 2009 Mar;59(2):293-315.
[15] Nylen K, Velazquez JL. The effects of a ketogenic diet on ATP concentrations and the number of hippocampal mitochondria in Aldh5a1(-/-) mice. Biochim Biophys Acta. 2009 Mar;1790(3):208-12.
[16] Bough K. Energy metabolism as part of the anticonvulsant mechanism of the ketogenic diet. Epilepsia. 2008 Nov;49 Suppl 8:91-3.
[17] Finn PF, Dice JF. Ketone bodies stimulate chaperone-mediated autophagy. J Biol Chem. 2005 Jul 8;280(27):25864-70.
[18] Yuk JM, Yoshimori T, Jo EK. Autophagy and bacterial infectious diseases. Exp Mol Med. 2012 Feb 29;44(2):99-108.
[19] Chandra Wickramasinghe, Milton Wainwright & Jayant Narlika. SARS – a clue to its origins? The Lancet, vol. 361, May 23, 2003, pp 1832.[20] Yordy B, Iwasaki A. Autophagy in the control and pathogenesis of viral infection. Curr Opin Virol. 2011 Sep;1(3):196-203.
[21] Douglas C. Wallace, Weiwei Fan, and Vincent Procaccio. Mitochondrial Energetics and Therapeutics Annu Rev Pathol. 2010; 5: 297–348.[22] Stephen Cunnane, Kathlyn Stewart. Human Brain Evolution: The Influence of Freshwater and Marine Food Resources. June 2010, Wiley-Blackwell.

 

MITOCHONDRIAL FUNCTION DETERMINES CANCER GROWTH
AND REPRESSION

To clarify even further, cancer cells burn glucose, an inherently "dirty" fuel as it generates far more reactive oxygen species (ROS) than fat and ketones. But in order to burn ketones, the cell must be healthy and normal. Cancer cells cannot burn fat, and this is the heart of successful cancer treatment, and why ketogenic diets appear to be so effective. They essentially starve the cancer, while nourishing healthy cells.

    "The clincher with this theory is that once there's enough mitochondrial damage — it's called a retrograde response or epigenetic signal to the nucleus — once this happens, you start to see the genomic instability. You start to see the accumulation of mutations. So the whole crux of this theory is, which comes first?

    The argument in the metabolic theory is that this mitochondrial damage happens first, and then you see the mutations. The mutations appeared [to be] the cause, but in fact they're a downstream signal from the true cause. So you can see why researchers were led on this wild goose chase, trying to find what these mutations were and why they were important," Travis says.

Seyfried has done a remarkable job of compiling supporting evidence for the metabolic theory of cancer. For example, he dug up so-called nuclear transfer studies, most of which date back to the 1980s. They were very simple, elegant experiments in which they took the nucleus of a cancer cell and put it into a normal cell with its nucleus removed. The cells are then grown in a petri dish, after which they're injected into mice, to see what happens.

What they discovered was that when you take the nucleus of a cancer cell, put it in a normal cell, and put it in mice, nothing happens. No cancers develop, and the cells revert back to normal. This despite the fact that you have just inserted cells that have all the driving mutations purported to cause cancer! So why don't you get cancer?

At the time, all they could say was that something in the cytoplasm suppresses cancer. The experiment was then flipped, and when the nucleus of a normal cell was put into a cancer cell, which was then injected into mice, about 98 percent of the animals developed cancer. This is irrefutable evidence that something in the cytoplasm is not only repressing cancer, but is driving cancer too.

    "When I interviewed the top guys in the field (I won't say who they are) and asked them about these nuclear transfer experiments, they didn't know about them, for one thing. When I explained it to them, they said, 'Well, if those are true, they're going to turn cancer biology on its head.' But they just hadn't been exposed to these data yet.

    It's incredible. [Seyfried] did an incredible job of compiling evidence that builds up. It's almost like you're building a case for a murder mystery. There's just so much evidence here and there, and you connect all these dots, the nuclear transfer experiments provide so much compelling data. When you put it all together, it's impossible to deny that this, if not the origin of cancer, it has to be explored further," Travis says.

Reference:
The Metabolic Theory of Cancer and the Key to Cancer Prevention and Recovery, February 07, 2016, Dr. Mercola

 

ANTI-INFLAMMATORY EFFECTS OF A KETOGENIC DIET
   Posted on February 23, 2015 by Casey Thaler, B.A., NASM-CPT, FNS

Many are aware that ketogenic diets offer a plethora of health benefits.1,2,3,4,5 Among the ketogenic diet's best properties are its anti-inflammatory effects.6,7  However, despite the emerging popularity of the diet, the scientific community is still relatively uncertain about the exact beneficial mechanisms behind this dietary approach.8,9,10 Recently however, a new study was published which looked at the potential mechanisms underlying the specific anti-inflammatory properties of ketosis.11

Eitel, Julia. "Innate Immune Recognition and Inflammasome Activation in Listeria Monocytogenes Infection." Frontiers. N.p., n.d. Web. 19 Feb. 2015

For those unfamiliar, a ketogenic diet is one which contains very little—if any—carbohydrate.12  One classic example of this dietary approach is seen in the Inuit people.13 The Inuit are indigenous people, who live in the Arctic region.14 Alaska, Canada and Greenland all have Inuit populations.15 In one of the more famous nutrition stories of recent times, Dr. Vilhjalmur Stefansson ate nothing but meat for one year, after being inspired by living with the Inuit, and seeing their remarkably low rate of disease.16,17,18 This was despite the Inuit's (then) controversial diet of nothing but meat, whether it came from fish or other sources. Stefansson saw no ill effects from a year of an all meat diet, with basically zero carbohydrate. He also consumed no vegetables. It is worth noting, that he also became very ill when he consumed only low fat meat, and nothing else. When he added the fattier meat back in, he immediately felt better.

The many reported benefits of the ketogenic diet include, but are not limited to: less hunger while dieting, improved cognitive function in those who are cognitively impaired, improved LDL cholesterol levels, improved weight loss, and improved levels of HDL cholesterol.19 This is in addition to the aforementioned anti-inflammatory effects. When we look to the scientific literature, we see that the anti-inflammatory nature of the diet has been studied for many years.20,21,22,23,24 The ketogenic diet has also been established as an adequate anticonvulsant therapy.25

This newly published research looks specifically at the ketone metabolite beta-hydroxybutyrate, which seems to inhibit the NLRP3 inflammasome.26 Since the NLRP3 inflammasome was previously found to have been linked to obesity and inflammation, as well as insulin resistance, inhibiting it would make mechanistic sense.27 The resultant weight loss and anti-inflammatory effects, commonly seem (at least anecdotally) when adopting a ketogenic diet, would then make sense as well. The NLRP3 inflammasome also drives the inflammatory response in several disorders including autoimmune diseases, type 2 diabetes, Alzheimer's disease, atherosclerosis, and autoinflammatory disorders.28,29

casey_ketosis02

Kossoff, Eric H. "More Fat and Fewer Seizures: Dietary Therapies for Epilepsy." The Lancet. N.p., July 2014

Menu, P, and J E Vince. "The NLRP3 Inflammasome in Health and Disease: The Good, the Bad and the Ugly." Clinical and Experimental Immunology 166.1 (2011): 1–15. PMC. Web. 19 Feb. 2015

Could it all be so simple? Possibly, though there is certainly likely more to be more scientific discoveries, relating to the beneficial effects of this specific dietary approach. Moving away from glucose and instead utilizing ketone bodies as a source of metabolic fuel, results in many profound changes, of which we are only beginning to scratch the surface of, scientifically.30,31,32

This new discovery will likely be the first of many new findings regarding the ketogenic diet, and its abundance of benefits. If you are looking to adopt a ketogenic approach, simply follow the many nutritious tenets of the Paleo Diet, and then lower your carbohydrate intake to below 100g per day. How low you need to go for optimum quality of life is highly variant, and many people report different results with different amounts of carbohydrates. Dialing in the best nutrition plan for you, when adopting a ketogenic diet, is integral. Be sure to consult with a professional to avoid possible nutrient deficiencies.

Reference:
[1] Dashti HM, Mathew TC, Hussein T, et al. Long-term effects of a ketogenic diet in obese patients. Exp Clin Cardiol. 2004;9(3):200-5.
[2] Paoli A. Ketogenic diet for obesity: friend or foe?. Int J Environ Res Public Health. 2014;11(2):2092-107.
[3] Zajac A, Poprzecki S, Maszczyk A, Czuba M, Michalczyk M, Zydek G. The effects of a ketogenic diet on exercise metabolism and physical performance in off-road cyclists. Nutrients. 2014;6(7):2493-508.
[4] Hussain TA, Mathew TC, Dashti AA, Asfar S, Al-zaid N, Dashti HM. Effect of low-calorie versus low-carbohydrate ketogenic diet in type 2 diabetes. Nutrition. 2012;28(10):1016-21.
[5] Millichap JG, Yee MM. The diet factor in attention-deficit/hyperactivity disorder. Pediatrics. 2012;129(2):330-7.
[6] Schugar RC, Crawford PA. Low-carbohydrate ketogenic diets, glucose homeostasis, and nonalcoholic fatty liver disease. Curr Opin Clin Nutr Metab Care. 2012;15(4):374-80.
[7] Masino SA, Kawamura M, Wasser CD, Wasser CA, Pomeroy LT, Ruskin DN. Adenosine, ketogenic diet and epilepsy: the emerging therapeutic relationship between metabolism and brain activity. Curr Neuropharmacol. 2009;7(3):257-68.
[8] Poff AM, Ari C, Seyfried TN, D'agostino DP. The ketogenic diet and hyperbaric oxygen therapy prolong survival in mice with systemic metastatic cancer. PLoS ONE. 2013;8(6):e65522.
[9] Krilanovich NJ. Benefits of ketogenic diets. Am J Clin Nutr. 2007;85(1):238-9.
[10] Mandel A, Ballew M, Pina-Garza JE, Stalmasek V, Clemens LH. Medical costs are reduced when children with intractable epilepsy are successfully treated with the ketogenic diet. J Am Diet Assoc 2002;102:396–8.
[11] Youm YH, Nguyen KY, Grant RW, et al. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat Med. 2015;
[12] Rogovik AL, Goldman RD. Ketogenic diet for treatment of epilepsy. Can Fam Physician. 2010;56(6):540-2.
[13] Phinney SD. Ketogenic diets and physical performance. Nutr Metab (Lond). 2004;1(1):2.
[14] Bjerregaard P, Dewailly E, Young TK, et al. Blood pressure among the Inuit (Eskimo) populations in the Arctic. Scand J Public Health. 2003;31(2):92-9.
[15] Helgason A, Pálsson G, Pedersen HS, et al. mtDNA variation in Inuit populations of Greenland and Canada: migration history and population structure. Am J Phys Anthropol. 2006;130(1):123-34.
[16] Stefansson V: Not by bread alone. The MacMillan Co, NY 1946. Introductions by Eugene F. DuBois, MD, pp ix-xiii; and Earnest Hooton PhD, ScD, pp xv-xvi.
[17] McClellan WS, DuBois EF: Clinical calorimetry XLV: Prolonged meat diets with a study of kidney function and ketosis. J Biol Chem 1930, 87:651-68.
[18] McClellan WS, Rupp VR, Toscani V: Clinical calorimetry XLVI: prolonged meat diets with a study of the metabolism of nitrogen, calcium, and phosphorus. J Biol Chem 1930, 87:669-80.
[19] Pérez-guisado J. [Ketogenic diets: additional benefits to the weight loss and unfounded secondary effects]. Arch Latinoam Nutr. 2008;58(4):323-9.
[20] Yang X, Cheng B. Neuroprotective and anti-inflammatory activities of ketogenic diet on MPTP-induced neurotoxicity. J Mol Neurosci. 2010;42(2):145-53.
[21] Masino SA, Kawamura M, Wasser CD, Wasser CA, Pomeroy LT, Ruskin DN. Adenosine, ketogenic diet and epilepsy: the emerging therapeutic relationship between metabolism and brain activity. Curr Neuropharmacol. 2009;7(3):257-68.
[22] Gasior M, Rogawski MA, Hartman AL. Neuroprotective and disease-modifying effects of the ketogenic diet. Behav Pharmacol. 2006;17(5-6):431-9.
[23] Kim do Y, Hao J, Liu R, Turner G, Shi FD, Rho JM. Inflammation-mediated memory dysfunction and effects of a ketogenic diet in a murine model of multiple sclerosis. PLoS ONE. 2012;7(5):e35476.
[24] Masino SA, Ruskin DN. Ketogenic diets and pain. J Child Neurol. 2013;28(8):993-1001.
[25] Bough KJ, Rho JM. Anticonvulsant mechanisms of the ketogenic diet. Epilepsia. 2007;48(1):43-58.
[26] Youm YH, Nguyen KY, Grant RW, et al. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat Med. 2015;
[27] Vandanmagsar B, Youm YH, Ravussin A, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med. 2011;17(2):179-88.
[28] Menu P, Vince JE. The NLRP3 inflammasome in health and disease: the good, the bad and the ugly. Clin Exp Immunol. 2011;166(1):1-15.
[29] Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469(7329):221-5.
[30] Guzmán M, Blázquez C. Ketone body synthesis in the brain: possible neuroprotective effects. Prostaglandins Leukot Essent Fatty Acids. 2004;70(3):287-92.
[31] Laffel L. Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes Metab Res Rev. 1999;15(6):412-26.
[32] Henderson ST. Ketone bodies as a therapeutic for Alzheimer's disease. Neurotherapeutics. 2008;5(3):470-80

Grey_Line

 

FIGHT CANCER WITH A KETOGENIC DIET: The Complete Picture
   by Ellen Davis, MS

When you view the complete picture, a ketogenic diet has a sort of domino effect on cancer. It lowers average blood-sugar levels, which reduces insulin levels in the blood. Reducing insulin levels effectively inhibits the production of other cancer-promoting downstream factors such as TAF (tumor angiogenesis factor). In addition, higher blood-ketone levels seem to protect normal cells and push cancer cells toward a more normal genetic expression, which means they are more likely to die, as all damaged cells should. To top it all off, low blood-glucose and high blood levels of Beta-Hydroxybutyrate .(BOHB) inhibit the ability of cancer cells to withstand and repair free-radical damage, and finally, ketones can affect cellular gene expression to suppress cancerous behavior. All of these effects compromise a cancer cell's ability to survive. The protective effect of nutritional ketosis is why calorie restriction, fasting, and ketogenic diets (which produce ketones and mimic fasting without the hunger) have such beneficial effects on human health. In fact, nutritional ketosis and ketone bodies themselves are being studied extensively as a treatment for many metabolic diseases.

A growing number of research papers have been published on ketogenic diets and the anti-inflammatory effect of ketone bodies on conditions such as epilepsy, multiple sclerosis, Amyotrophic Lateral Sclerosis (ALS), Parkinson's disease, Alzheimer's disease, head trauma, type 2 diabetes, cardiovascular disease, autism, migraine headaches, stroke, depression, acne, and, of course, cancer.

In fact, this ability of the body to switch fuel sources from glucose to ketones (i.e., to enter nutritional ketosis) is a crucial adaptation that has most likely permitted our continued survival on planet Earth. Ketone bodies act as a backup system when blood-glucose levels fall as a result of either starvation or carbohydrate restriction. Without this adaptation, the human race, from Paleolithic man to the modern cast- away, might have perished during times when food was in short supply.

This is all rather technical, so I'll end this section with the quick summation: to fight cancer metabolically, it is crucial that you lower blood-glucose and insulin levels and increase circulating ketone bodies.

And that is exactly what a ketogenic diet does.

Reference:
Fight Cancer with a Ketogenic Diet, Third Edition: Using a Low-Carb, Fat-Burning Diet as Metabolic Therapy 3rd Edition by Ellen Davis, MS  .

Grey_Line

 

BRAIN-GUT-MICROBIOTA AXIS IN PARKINSON'S DISEASE

Introduction
Parkinson's disease (PD) is a multicentric neurodegenerative disorder characterized by the accumulation and aggregation of alfa-synuclein (α-syn) in the substantia nigra in the central nervous system (CNS) and in other neural structures. The classical motor symptoms like bradykinesia, resting tremor, rigidity and late postural instability result from the death of dopamine-generating cells in the substantia nigra. There is also a wide spectrum of non-motor manifestations involving for example olfactory (loss of smell), gastrointestinal (GI), cardiovascular, and urogenital systems. It has become evident that the different levels of the brain-gut axis including the autonomic nervous system (ANS) and the enteric nervous system (ENS) may be affected in PD. Recently, it has been also recognized that the brain-gut axis interactions may be essentially influenced by the gut microbiota. On the one hand, dysregulation of the brain-gut-microbiota axis in PD may result in GI dysfunction, which is present in over 80% of PD subjects. On the other hand, this dysregulation may also significantly contribute to the pathogenesis of PD itself, supporting the hypothesis that the pathological process is spread from the gut to the brain.

Conclusion
A better understanding of the brain-gut-microbiota axis interactions should bring a new insight in the pathophysiology of PD, permit an earlier diagnosis with a focus on peripheral biomarkers within the ENS, as well as lead to novel therapeutic options in PD. Dietary or pharmacological interventions should be aimed at modifying the gut microbiota composition and enhancing the intestinal epithelial barrier integrity in PD patients or subjects at higher risk for the disease. This could influence the initial step of the following cascade of neurodegeneration in PD. The elucidation of the temporal and casual relationship between the gut microbiota alterations and the pathogenesis of PD will be of great clinical relevance. Further studies on a new therapeutic approach in PD based on the modification of the gut microbiota with probiotics, prebiotics, or even fecal microbiota transplantation are awaited.

[ Read complete article ]

Please click on the film icon() to see video

The Many Facets of Keto-Adaptation:
Health, Performance, and Beyond

by Jeff Volek
Dr. Jeff Volek is a Full Professor in the Department of Kinesiology
at the University of Connecticut

Ketosis Safe Long Term and Intermittent Fasting

 

 

Half of All Children Will Be Autistic by 2025
   Warns Senior Research Scientist at MIT

For over three decades, Stephanie Seneff, PhD, has researched biology and technology, over the years publishing over 170 scholarly peer-reviewed articles. In recent years she has concentrated on the relationship between nutrition and health, tackling such topics as Alzheimer's, autism, and cardiovascular diseases, as well as the impact of nutritional deficiencies and environmental toxins on human health.

At a conference last Thursday, in a special panel discussion about GMOs, she took the audience by surprise when she declared, "At today's rate, by 2025, one in two children will be autistic." She noted that the side effects of autism closely mimic those of glyphosate toxicity, and presented data showing a remarkably consistent correlation between the use of Roundup on crops (and the creation of Roundup-ready GMO crop seeds) with rising rates of autism. Children with autism have biomarkers indicative of excessive glyphosate, including zinc and iron deficiency, low serum sulfate, seizures, and mitochondrial disorder...

Other toxic substances may also be autism-inducing. You may recall our story on the CDC whistleblower who revealed the government's deliberate concealment of the link between the MMR vaccine (for measles, mumps, and rubella) and a sharply increased risk of autism, particularly in African American boys. Other studies now show a link between children's exposure to pesticides and autism. Children who live in homes with vinyl floors, which can emit phthalate chemicals, are more likely to have autism. Children whose mothers smoked were also twice as likely to have autism. Research now acknowledges that environmental contaminants such as PCBs, PBDEs, and mercury can alter brain neuron functioning even before a child is born...

Even worse, she notes, additional chemicals in Roundup are untested because they're classified as"inert," yet according to a 2014 study in BioMed Research International, these chemicals are capable of amplifying the toxic effects of Roundup hundreds of times over.

Glyphosate is present in unusually high quantities in the breast milk of American mothers, at anywhere from 760 to 1,600 times the allowable limits in European drinking water. Urine testing shows Americans have ten times the glyphosate accumulation as Europeans.

"In my view, the situation is almost beyond repair," Dr. Seneff said after her presentation. "We need to do something drastic."

[ Read complete article ]

 

WHY IS IT NECESSARY TO KNOW THE SCIENCE?

The "Conscious Integrative Nutrition" method is not just a "diet". It is not a method designed just for weight loss, but rather a teaching method whose action provides a healthy and physically toned and lean body.

Today we find many diets to reduce fat ratio, all promising lasting results and each with its particular group of adepts. But, it is obvious that diets do not work, as people with obesity problems are increasing. If diets would work, the problem would be over—there would be no obesity.

There are no miracles without knowledge. Knowledge allows fundamental changes to our habits and beliefs. Start by changing the strategy and use your intelligence. Weight loss is a matter of changing your habits, "change your lifestyle and you will lose weight."  

Healthy Versus Dangerous Fats

When we're talking about implementing a high-fat diet, it's extremely important to identify which fats we're referring to, and how much.

As a general rule, you'll want at least 50 to 75% of your total calories (some may benefit from as much as 85%) from healthy fats, which include: olives, avocados, coconut oil, MCT oil, organic pastured butter, cacao butter, raw nuts such as macadamia and pecans, seeds such as black sesame, cumin, pumpkin and hemp seeds, organic pastured eggs, grass-fed meats, lard and tallow.

If you're using the fats found in the typical American diet, you're undoubtedly going to get worse, not better. This is actually one of the reasons why the low-fat diet is in fact beneficial for some; because it lowers their intake of harmful polyunsaturated (PUFA) refined vegetable oils, primarily omega-6.

Making matters worse, 85 to 90% of those oils are from corn and soy, most of which are genetically engineered (GE), which means they're more heavily contaminated with glyphosate residues from Roundup. I suspect glyphosate may be an important contributor to mitochondrial dysfunction.

Reference: The Clinical Use of Nutritional Ketosis, August 14, 2016 mercola.com

Please click on the film icon() to see video

The Cure for 97% of Diseases
by Dr. Bergman
How 97% of diseases can be prevented and cured.
The belief system of the medical allopathic model of healthcare is beginning to
shift to a vitalistic approach to healing that supports the body's natural systems.
It's time to change the world and it begins now.

 

Some improvements after adding Flesh foods to your diet if you have been following  "Traditional Vegetarian diet of either "All-raw or 80% Raw/20% cooked Therapies"

  • Better recovery after exercise—distance runners are able to run hard workouts more frequently with fewer rest days or easy workouts in between
  • Better Sleep
  • Correction of "visual disturbance" like "spots" in the visual field, obscure vision,  which may be developed on the traditional vegetarian diet of either all-raw or 80% raw/20% cooked
  • Maintained weight more easily on lesser volumes of food
  • Moods improve and more buoyant feelings
  • Nervous system becomes more stable and not so prone to hyperreactive panic-attack-like instability
  • Not hungry all the time
  • Sex drive increases somewhat (usually accompanies better energy levels)
  • Stools became a bit more well-formed

Why "diets" fail?

Starting with the name "Diet". What is needed is not a "diet", more coherent information is needed to help us make the decision to change our "lifestyle", which includes the nutrition of the physical body. Maintaining a vision toward the future, we must recognize the importance of learning coherently, "Give a man a fish, and you feed him for a day; show him how to catch fish, and you feed him for a lifetime."

Lack of Information. The constant bombardment of false-data generates confusion. Thus, research and understanding metabolism with an open and critical mind, modulating and considering the individual characteristics, is the way. You will become slim and healthy, and you'll never get fat again. "It's more important to learn what not to eat, than to learn what to eat."

Lack of Nutrients. By understanding metabolism we discover that we need not starve our bodies. We can have foods that our body is actually designed to consume and enjoy eating deliciously.

Lack of Criteria. No one knows your body better than you, so follow your instincts and modulate food that really works for your metabolism. Start your change convinced that you have a clear motivation that will really change your habits.

Lack of Determination and Support. Accept your body as is. Solve your emotional resentment allowing yourself to rediscover your identity. Just feel your internal support, drop the dependence on external opinion and crutches. Be ware that you will face socio-cultural obstacles. You cannot avoid social engagements, parties and meetings. Inevitably, the key is to be consistent even in difficult times.

Lack of Exercise. The body was designed to move where bone structure works in synergy with the muscular system. It is necessary to integrate physical activity to offset for our current sedentary culture. Exercise mobilizes the lymphatic system detoxifying and strengthening muscles, thus generating vital energy. By eating healthy everyday and spending some time doing physical activities, you will see faster and better results.

 

HOW DO I GET WELL AND RETAIN MY HEALTH?

  • Avoiding grains, sugars, and GMOs (Genetically Modified Organisms)
  • Connecting with the Sun in Nature to optimize Vitamin D levels and
      regulate Circadian Rhythms
  • Consuming fermented foods, such as Goat Kefir, Goat Yogurt and Sauerkraut
  • Cooking only with Ghee or Coconut oil
  • Drinking plenty of Pure Water
  • Eating Organic foods
  • Fallowing a Ketogenic Diet and Intermittent Fasting
  • Maintaining a Spiritual Practice embracing Meditation and Relaxation
  • Moving my body each day using Chi Kung and Yoga
  • Oil pulling with Coconut oil
  • Sleeping deeply, especially during the healing process

 

THE CONSCIOUS INTEGRATIVE NUTRITION PROGRAM

The program requires your commitment and dedication for 3 months. The process involves a change in the habits and beliefs that are familiar to you, and inherited through generations. The changes proposed in this program are healthy for all family members, and their participation and support is crucial.

It is designed to streamline the immune, metabolic and neuronal systems  changing  dramatically the method of cells-energy-delivery which reduces the issues that "glucose/insulin" metabolism produces.

KETO-ADAPTATION
  
Metabolic Benefits Snap Shot:

  • Decrease in Triglycerides
  • Decreases the Accumulation of Lactate, contributing to better control of
      pH and respiratory function
  • Heartburn Relief
  • Improve Insulin Sensitivity, Resistance and Recovery from exercise
  • Improvement in Mental Health disorders
  • Increase in HDL Cholesterol and Better Heart Disease Risk
  • Less Gum and Tooth disease
  • Lower Blood Pressure
  • Lower Blood-Sugar (glucose) and HbA1c levels
  • Lower levels of Inflammation
  • Neurological Support and Protection
  • Provides a steady and sustained source of fuel for the brain,
      protecting athletes from hitting the wall
  • Reduce of factor associated with Cancer
  • Reduction of inappropriate Hunger and Sugar Craving
  • Spares Protein from being Oxidized, preserving lean tissue
  • Weight loss

INCLUDES

  • 1 preliminary session
  • 1 cooking class to guide you in the preparation of:
    • Fermented Foods
    • Vegetable and Animal Cooking oils
  • 1 class on the Biology of Human Metabolism
  • 1 Yoga series designed for you
  • 1 Physical Exercised routine designed for you
  • 1 Meditation sequence designed for you
  • Physical body measurements before and after
  • Body Composition Analysis before and after:
    • Weight
    • % Body Fat
    • % Body Water
    • Muscle Mass
    • rating Physics
    • DCI/BMR-Daily Calorie Intake (DCI) / Basal Metabolic Rate (BMR)
    • Metabolic Age
    • Bone Mass
    • Visceral Fat
  • Nutritional guide listing recommended, acceptable and prohibited foods
  • 1 BioDecoding session to look for subconscious resentment and believes

The program meets the need for three (3) groups:

 

1.

Individual:

One person

 

2.

A couple:

Two people

 

3.

Family:

A couple with children

 

 

IF YOU'VE DECIDED TO TAKE CONTROL OF YOUR HEALTH!

Subscribe for the preliminary session of the program and contact us to define your goals and objectives.

The preliminary session consists of an interview to assess your current health condition, define the necessary personalized changes to define your custom program.

Please reserve the preliminary session to receive a "Information Document" in PDF format via email, which will be used as the basis for this program. The full document and a full body photo are required for the preliminary session which will be held personally in Costa Rica.

Preliminary Sessions one-on-one at location.
Book preliminary session (≈1.5 hours):

$90 USD

Cedit Card (PayPal)

 

R.S.V.P. to schedule session
Refunds will not be available for registrants who choose not to complete the session. 

DISCLAIMER

 

 

© 2006-2017 ― All rights reserved
INSTITUTE OF INTEGRATIVE CHI KUNG WORLDWIDE

Links

 

EDUCATING FOR A NEW DAWN
USA 1+(505) 750-1455  Costa Rica (+506) 8317-2005     

 

 

 

 

 

"People of accomplishment rarely sat back and let things happen to them;
they went out and happened to things."